Definitions.

- 1. The *p*-series is of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$ for any $p \in \mathbb{R}$.
- 2. A series $\sum a_n$ converges absolutely (or is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$, converges.
- 3. A series whose terms alternate between positive and negative values is called an alternating series.
- 4. A series $\sum a_n$ is converges conditionally (or is conditionally convergent) if $\sum a_n$ converges, but $\sum |a_n|$ diverges.

Convergence Tests.

- 1. The *n*th-Term Test: If it is not true that $a_n \to 0$, then the series diverges.
- 2. The Monotonic Sequence Theorem: A series $\sum a_n$ of nonnegative terms converges if and only if its partial sums are bounded from above.
- 3. The Integral Test: Let $\{a_n\}$ be a sequence of positive terms. Suppose $a_n = f(n)$, where f is a continuous, positive, decreasing function of x such that $\exists N \in \mathbb{N}$ such that $\forall x \geq N$. Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_N^{\infty} f(x) dx$ both converge or both diverge.
- 4. The Comparison Test: Let $\sum a_n$, $\sum b_n$ and $\sum c_n$ be series with nonnegative terms. Suppose that for some $N \in \mathbb{N}$

$$a_n \leq b_n \leq c_n, \quad \forall n \geq N.$$

- (a) If $\sum c_n$ converges, then $\sum b_n$ also converges.
- (b) If $\sum a_n$ diverges, then $\sum b_n$ also diverges.
- 5. Limit Comparison Test: Suppose that $\exists N \in \mathbb{N}$ such that $a_n > 0$ and $b_n > 0 \ \forall n \ge N$.
 - (a) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
 - (b) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
 - (c) If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.
- 6. The Absolute Convergence Test: If $\sum |a_n|$ converges, then $\sum a_n$ converges.

7. The Ratio Test: Let $\sum a_n$ be a series and suppose that

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = r.$$

- (a) If r < 1, then the series converges absolutely.
- (b) If r > 1, then the series diverges.
- (c) If r = 1, the test is inconclusive.
- 8. The Root Test: Let $\sum a_n$ be a series and suppose that

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = r.$$

- (a) If r < 1, then the series converges absolutely.
- (b) If r > 1, then the series diverges.
- (c) If r = 1, the test is inconclusive.
- 9. The Alternating Series Test: The series $\sum_{n=1}^{\infty} (-1)^n u_n$ converges if the u_n 's are all positive, the u_n 's are (eventually) decreasing and $u_n \to 0$.

Which Tests to Use.

- 1. Geometric series: $\sum ar^n$ converges if |r| < 1; otherwise it diverges.
- 2. *p*-series: $\sum 1/n^p$ converges if p > 1; otherwise it diverges.
- 3. Series with Nonnegative Terms: Try the Integral Test or try comparing to a known series with the Comparison Test or the Limit Comparison Test. You can also try the Ratio or Root Test.
- 4. Series with Some Negative Terms: Does $\sum |a_n|$ converge by the Ratio or Root Test, or by another test from above? Remember that absolute convergence implies convergence.
- 5. Alternating series: $\sum a_n$ converges if the series satisfies the conditions of the Alternating Series Test.

Bounds for Convergence Tests.

1. The Integral Test: Let $\{a_n\}$, f and $N \in \mathbb{N}$ satisfy the conditions of the integral test. Then the remainder $R_n = \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{n} a_k$ satisfies the inequalities

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_n^{\infty} f(x)dx$$

2. The Alternating Series Test: Let $\sum_{n=1}^{\infty} (-1)^n u_n$ satisfy the conditions of the alternating series test. Then the remainder R_n , as above, has the same sign as a_{n+1} and satisfies the inequality

$$|R_n| \le |a_{n+1}|$$